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It has been conjectured by Lushnikov and Ziff that Smoluchowski's coagulation 
equation describes a gelation transition, i.e., the mean cluster size diverges 
within a finite time tc (gelpoint) if the coagulation rate constants K(i, j) have the 
property K(ai, aj)= a~K(i, j), with 2 > 1. The existing evidence was based on 
self-consistency arguments. Here we prove this conjecture for an appropriate 
class of physically acceptable rate constants by constructing a finite upper 
bound for tc and a nonvanishing lower bound. Apart from the exactly solved 
case K(i, j) = ij this result provides the first solid proof of the occurrence of a 
gelation transition in a description based on Smoluchowski's coagulation 
equation. 

KEY WORDS: Smoluchowski's equation; coagulation; aggregation; gelation; 
kinetic phase transition. 

INTRODUCTION 

The purpose of this note is to prove that Smoluchowski's coagulation 
equation, for certain classes of rate constants, leads to a gelation transition 
at a finite time to, (gelpoint). The property characterizing the gelation 
transition is the formation of an infinite cluster (gel) at a finite time tc, 
where the mean cluster size (mass average degree of polymerization) grows 
beyond all bounds. 

All previous evidence for the occurrence of gelation was based on an 
exactly solvable model or, for more general models, on self-consistency 
arguments. Here we prove for certain classes of rate constants that some 
measure for the mean cluster size becomes infinite at a finite nonvanishing 
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time to. This phenomenon is identified here as the occurrence of a gelation 
transition. 

Smoluchowski's coagulation equation (t) is a coupled set of rate 
equations for the cluster size distribution, i.e., for the concentrations ck(t) 
of clusters of size k (k = 1, 2,...). If K(i, j )  is the rate constant for the cluster- 
ing of an i- and a j-met, then Smoluchowski's equation has the following 
form 

1 
~k(t)=~ ~ K( i , j ) c i ( t ) c j ( t ) - - ck ( t )  ~ K ( k , j ) c j ( t )  (1) 

i + j = k  j = l  

It was first recognized by Lushnikov (2~ and, more recently, by Ziff, (3) 
that for certain choices of the reaction rates, Smoluchowski's equation 
describes a gelling system, i.e., a system going through a gelation transition 
at a finite time to. This time-dependent phase transition has been studied in 
great detail ~4) in the exactly soluble model K(i, j ) = / j .  For this particular 
model one observes the following interesting phenomena 

(i) As t i" to, the weight average cluster size diverges 

k2ck / ~  kck = ( tc - t ) -  ' ~ oo ( t'~ to) (2) l~(  t) E 

The value of t c is given by 1/l~w(O ). For all t < t c ,  the sol mass 
M~(t) = Y , ~ l  kck(t), i.e., the concentration of monomeric units contained 
in finite size clusters (sol), is conserved: 3;/~(t)= 0 or M~ -- constant. The 
unit of volume is chosen such that M~ = 1 for t ~< to. 

(ii) For t>>, tc the mass conservation law, ~/~ =0,  is violated. This 
may be seen by calculating the mass flux - J ( L ,  t) from clusters with size 
k ~< L to clusters with k > L. This yields, with the help of (1) 

J(L,  t) = ~ kd k = - ~" iK(i, j)  cic j (3) 
k = l  i = 1  j = L  i + 1  

For t <  tc, where ck(t) decays exponentially, J(L, t) vanishes as L ~  ~ .  
Hence the sol mass is conserved: )~/~(t)= J ( ~ ,  t ) =  O. However, at tc, ck(t) 
decays algebraically, c k ( t ) ~ k  5/2 ( k ~  co), and a mass flux occurs from 
finite clusters (sol) to the gel, viz. J(L, t) ~ L ~  eonst, as L--* ~ .  In this 
interpretation, the gel is identified as the infinite cluster. 

The results (i), (ii) apply to the special model K ( i , j ) =  0". It is of 
interest to investigate whether other functional forms of the coagulation 
kernel K(i, j )  lead to a similar phase transition in a finite time. 

Concerning the possible occurrence of a gelation transition, the follow- 
ing results are known. For K( i , j )<~( i+ j ) ,  White (5) proves absence of 
gelation for all finite t>O. Intuitive arguments for the occurrence of 
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gelation have been given for a model describing surface interaction, (6) viz. 
K(i, j )  = (/j)~ provided �89 < e) ~< 1, and also (v) for the model 
K(i , j )=i~jr  ~ provided e + / ? >  1 and Ic~-/3] < 1. For  the surface 
interaction model, there also exists numerical evidence for the occurrence 
of gelation. (8) Furthermore, Leyvraz (9) has shown that gelation occurs for 
the diagonal kernel K(i,j)=jJ'f i j  with 2 >  1. Ziff (3) has suggested that 
gelation occurs if K(j, j) ~ j~" with 2 > 1 and is absent otherwise. 

On the basis of intuitive arguments the following more general 
criterium (7'~~ for the occurrence of gelation has been formulated concern- 
ing homogeneous kernels K(ai, aj) = aXK(i, j) with a degree of homogeneity 
2: gelation occurs for 2 > 1 and is absent for 2 ~< 1. 

The purpose of this paper is to provide a rigorous proof of the 
occurrence of a gelation transition in Smoluchowski's coagulation equation 
for a class of coagulation kernels K(i, j) with 1 < 2 ~< 2. 

M E T H O D  

We do not have a rigorous proof of this criterion for general 
homogeneous kernels with 2 > 1 but only for a subset of such kernels, to be 
specified below. The point of this note is to prove the occurrence of 
gelation for this subset and to give an estimate of the gelpoint t c. 

We proceed as follows. As no explicit solutions are known in general, 
one has to develop other tests to decide on the occurrence of gelation; e.g., 
one may be able to demonstrate that one of the characteristic phenomena 
(i), (ii) does or does not occur. In particular, we study the possible 
divergence of some of the moments M~(t) =- Z2= ~ k~ck(t), which provide a 
measure for the mean cluster size, such as m z ( t ) =  k~w(t ). We construct, in 
fact, rigorous bounds for the gelpoint to, where the mean cluster size 
becomes infinite. Upper bounds on tc must be finite, lower bounds non- 
vanishing. We recall that lower bounds have been obtained before, and 
that lower bounds alone give no evidence whatsoever about the occurrence 
of gelation. No gelation (i.e., t c = oe) is also consistent with a lower bound. 

The appropriate method is to construct upper and lower bounds on 
Ms(t) and to investigate whether these bounds do or do not diverge at a 
finite time, as illustrated in Fig. 1. The fact that one can construct a lower 
bound on Ms that diverges within a finite time tl (see Fig. lc), shows that 
gelation has occurred at some time tc ~< t~. On the other hand, divergence 
of an upper bound on M~ yields a lower bound on the geltime, and 
gelation may or may not occur (see Fig. lb). An upper bound, remaining 
finite for all finite times, proves the absence of gelation (see Fig. la). 

The plan of this paper is as follows. We specify the subset of kernels to 
be considered and show that a gelation transition takes place at a finite 
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Fig. 1. Schematic behavior of M=(t) (solid line) together with an upper bound (dotted line) 
and a lower bound (dashed line). If 2 ~< 1 (Fig. l a ) the re  exists a finite upper bound on M~(t) 
for all finite t, and gelation does not occur. In the undecided case (Fig. lb: 2 > 1 ,  v < l )  
gelation may occur with tc ~> t2. In the gelling case (Fig. lc: Z > 1, v = 1) one has t2 ~< tc ~< tl. 

time tc if 2 > 1. Next, we calculate upper and lower bounds on the geltime 
and conclude with a discussion. 

S p e c i f i c a t i o n  o f  K(i, j) 

We start by specifying the subset of coagulation kernels to be con- 
sidered. We first recall that homogeneous kernels may be specified by two 
exponents 

K(i , j )~- i~ j  ~ ( j > > i ; 2 = # + v )  (4a) 

K(ai, aj) = a~K( i, j) = a~'K(j, i) (4b) 

where we impose (1~ the physical restrictions 2 ~< 2 and v ~< 1. On account of 
the restrictions (4a, b) on K(i, j), we may introduce a kernel K(~ j), as 
follows 

K(i, j) =- (ij) ~ (i + j) v ~K(~ j) (5a) 

where now K(~ is a homogeneous function with zero degree of 
homogeneity. We assume that K(~ j)  is bounded and nonvanishing, i.e., 
that there exist constants K~ and K 2 such that for all i, j = 1, 2 .... 

0 < K 1 ~ K(~ j )  ~< K2 < oo (5b) 

The requirement that K(~ is nonvanishing is imposed in order to 
exclude kernels with K ( L j ) = O  for which a monodisperse distribution 
would be stationary. 2 The criterion of boundedness, K(~ is 
trivially fulfilled if K(~ j)  is a continuous function of the cluster sizes. 

2 An example is coagulation under gravitational settling, where K(i, j)  = 
(il/3 + ju3)2 lix/3 _jt/3[. 
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Since we are interested in the possible occurrence of a gelation trans- 
ition, we consider only kernels K(i, j)  with a degree of homogeneity 2 > 1. 
The reason is that kernels with 2 ~< 1 may be bounded from above by i + j 
as may be seen from eqs. (5a, b) 

K(i, j)  <~ 2 -UK2(i + j);~ <~ 2 -"K2(i + j) 

For such kernels it immediately follows from White's theorem that there 
does not occur a gelation transition (see Fig. la). 

U p p e r b o u n d  o n  tc 

The special subset of homogeneous kernels to be considered is specified 
by eqs. (4) and (5) with 2 > 1 and v=  1. Here one may obtain an upper 
bound for the geltime, if the gelpoint is identified as the earliest time at 
which some of the moments diverge. This upper bound is obtained as 
follows. The moment equation for the c~-th moment 

1 
M~ = ~  K(i,j) cic][(i+j) ~ - i ~ - j ~ ]  (6) 

l,J 

may be written in the form 

1 
~I~ = -~ ~ (ij) ~ (i ~- ~ + j~ - ~) z(i, j)  cicj 

with 

(7a) 

z ( i , j ) = K ( i , j ) [ ( i + j ) ~ - i ~ - j ~ ] / [ ( i j )  ~ ( i ~ - ; + j  ~ ;)] (7b) 

From its definition it follows that ;~(i, j)  is a homogeneous function of i and 
j, with zero degree of homogeneity. The behavior of z( i , j )  for j>>i and 
cr > 1 may be obtained from (4b) as 

z(i,j)~-c~(i/j) l -v  (j>>i) (8) 

i.e., z(i, j)  ~ ~ for j>> i if v = 1. Thus )~(i, j)  is bounded and nonvanishing if 
j>> i (or i>>j) and hence, on account of (Sa, b), for all i andj .  We conclude 
that there exist constants )~1(~) > 0 and Z2(cO < oo such that 

gl(c~) ~ z(i, j)  <, Z2(cQ (9) 

for all i andj .  Hereafter it is understood that Zl(a) and )h(e) represent the 
largest, respectively smallest, number for which the inequality (9) holds. 
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The upper bound on t~ follows from the first inequality in (9). The 
special choice ~ = 2 in eq. (7a) yields an inequality for the 2-th moment  

A)/~ ~> Z~(2)(M~) 2 (10a) 

or  

M~(t)>lM),(o)[1-Z~(2)M),(o) t]- ' -M).(o)(1- t / t~)  ~ (lOb) 

For  general ~ > 2, one finds first an equation for the a-th moment  

/I)/~ ~> Z,(a) M~(t) Ma(t) ( l l a )  

which may be solved with the use of (lOb) 

M~(t)>jM~(~ f~ dt' M~(t')l ( l i b )  

= m~(o)(1 - t/t1)- ~(~) 

with fl(~)-Zl(a)/Z~(2). Thus, we find the upper bound 
[Z1(2) Ma(o)] -1 

t, <~ tx =- 

or  

M~(t) <~ M;~(o)(1 - t/t2) -1 (12b) 

where we have defined t2 =- [Zz()~)M;.(o)] -1. We conclude that Ma(t) is 
finite for all t ~< t2. Similarly one finds for general ~ > 2 that 

a;/~ ~< ;(2(~) M~(t) M;~(t) (13a) 

or  

Ms(t) <~ M~(o)(1 - t/t2) -~(~ (13b) 

where the exponent 7 is given by y ( e ) =  ~(2(0~)/~(2(,~). We conclude that all 
moments  M~(t) are bounded for t < r2, so that J(L, t) -~ 0 as L --+ 0o. This 
shows that t 2 is a lower bound for the geltime, tc ~> t2. 

Thus, we have constructed diverging upper and lower bounds on the 

L o w e r  b o u n d  on tc 

The lower bound on the gelpoint follows from the second inequality in 
eq. (9). The choice ~ = ~. in (7a) now gives 

~f;~ ~ X2(2)(M,~) 2 (12a) 
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moments M~(t) if v = 1, as illustrated in Fig. lc. In particular, divergence of 
the bounds on the mean cluster size M2(t) implies that gelation takes place 
at a finite time t~, with t 2 ~< t~ ~ t~. 

DISCUSSION 

As an example with v = 1, consider the kernel K(i, j)= iff +ji ~, with 
0 < co < 1. One finds upper and lower bounds for the geltime, as follows 

[Z=(2) M~(o)] -1 ~< t~ ~< [Z~(2) M;.(o)] -~ (14) 

where X2(2) may be calculated explicitly 

Z2(2) = max {2/2, 2 J- - 2} (15a) 
and furthermore 

z,()~) = 2/2 (2 i> ~) 
(lSb) 

z,(~) >~ 2 ( 1 - 2  ,-~) (~<~) 

We note that for the special case of monodisperse initial conditions, one 
has M;~(o)= 1. 

Next consider coagulation kernels with v < 1 but still 2 >  l. The 
equation for the a-th moment may again be written in the form (7a, b), 
with x(i, j )  for j >> i given by (8). For  kernels with v < 1 it follows that for 
all ~ > 1 ,  z( i , j )~O as i/j~O. Therefore Z I (~ )=0  in this case. As a con- 
sequence one finds that the upper bound on the geltime, 
tl = [~1(2) M~.(o)] -~ diverges for v < 1. Thus we are not able to prove with 
the help of the present methods that gelation actually occurs for v < 1. 
However, it is possible to construct lower bounds for the gelpoint, since 
;~2(a) is finite also for v < 1. In this case the same results are found as for 

Next, we want to stress that the homogeneity requirement (4a, b), 
(5a, b) has been imposed for convenience only. In fact, if one finds a lower 
bound t2 on the geltime for some homogeneous kernel K(i, j) with 2 > 1, 
then clearly t~.~> t2 for any coagulation kernel Ku satisfying Ku<~ K(i, j). 
Similarly, if t~ sets an upper bound to the geltime for some homogeneous 
kernel K(i, j) with 2 > 1 and v =  1, then tc ~< t~ for any kernel K~ with 
K~ ~ K(i, j) for all i and j. 

We have imposed the physical requirements 2 ~< 2 and v ~< I on the 
coagulation kernels considered in this paper. Inspection shows that our 
results are equally valid for models with 2 > 2, provided one maintains the 
restriction v~< 1. This shows that no mathematical problems, such as 
instantaneous gelation (t~ =0) ,  arise if 2 > 2. However, for certain models 
with v >  1, there exists numerical evidence ~'8) that a gelation transition 
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takes place already at t = 0. In fact one can show also analytically ~2) that 
for any model with v > 1, gelation occurs instantaneously. 

Our definition of gelation, viz. the divergence of the mean cluster size, 
or, equivalently, of some moment M~(t), is perhaps physically not the most 
appropriate one. In principle, it remains possible that M~(t) for ~ > 2  
diverges as t ]' to, but that limL_ co J(L, to)= J(oo, tc) is vanishing, i.e., that 
at the gelpoint tc there is no finite flux of mass from the sol (finite size 
clusters) to the gel (infinite cluster). In that case the fraction of monomeric 
units, contained in the gel, which should be the order parameter of this 
gelation transition, would still be vanishing for t >~ to, and the divergence of 
some moment cannot be identified with a gelation transition. However, if 
one accepts the scaling hypothesis, this possibility is excluded, since it then 
follows that the occurrence of a gelation transition at t~ coincides with the 
divergence of all moments Ms(t) with ~ >  (2+ 1)/2. 

Finally we mention that we have not attempted to calculate the shar- 
pest possible upper or lower bounds on the gelpoint. Our primary goal was 
to show that such upper and lower bounds exist, and may in principle be 
calculated. In fact, it turns out that in certain special cases sharper lower 
bounds on tc are obtained if Jensen's inequality is applied to eq. (13a). (7) In 
general, it depends upon the coagulation kernel under consideration which 
method gives the best estimate of the geltime t C. 
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